101 research outputs found

    Design and Bolometer Characterization of the SPT-3G First-year Focal Plane

    Get PDF
    During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 201

    SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope

    Full text link
    We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    HIRAX:A Probe of Dark Energy and Radio Transients

    Get PDF
    The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400-800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8-2.5 will be used to measure Baryon Acoustic Oscillations (BAO). HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and eXperimentciently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.Comment: 11 pages, 5 figure

    Optimization of transition edge sensor arrays for cosmic microwave background observations with the South Pole Telescope

    Get PDF
    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South Pole Telescope. The camera, which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs

    Periodic activity from a fast radio burst source

    Full text link
    Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from extragalactic distances. Their origin is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events. Despite searches for periodicity in repeat burst arrival times on time scales from milliseconds to many days, these bursts have hitherto been observed to appear sporadically, and though clustered, without a regular pattern. Here we report the detection of a 16.35±0.1516.35\pm0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB). In 38 bursts recorded from September 16th, 2018 through February 4th, 2020, we find that all bursts arrive in a 5-day phase window, and 50% of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself, or through external amplification or absorption, and disfavour models invoking purely sporadic processes
    • …
    corecore